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Abstract

Using MacCormack-type methods, a new class of highly accurate compact MacCormack-type

schemes is derived which does not require a tridiagonal matrix inversion to obtain the spatial

derivatives. Two example schemes are shown, and results of these schemes for three linear and

nonlinear CAA Benchmark Problems are presented.

Iatmlagtlm

Computational aeroacoustics is concerned with the time-accurate solution of flow and acous-

tic phenomena over long periods of time. To accomplish this goal, high-order finite-difference

schemes and optimized schemes have been developed [e.g., Refs. 1-6].

There are two main classes of high-accuracy finite-difference schemes: explicit schemes and

compact schemes. Explicit schemes employ large computational stencils for accuracy, while

compact schemes use smaller stencils by using the flux derivatives as independent variables at

each grid point. While compact schemes are more accurate than the equivalent explicit scheme,

solving for each flux derivative requires a scalar tridiagonal or pentadiagonal matrix inversion.



Recently,a newclass of high-accuracy explicit MacCormack-type schemes have been intro-

duced for computational aeroacoustics. 6 Applying this methodology to compact schemes has

resulted in a new class of compact MacCormack-type schemes which use three-point stencils

while retaining high accuracy.

Mathematical Formulation

Consider the 1-D equation:

OU OF

"_" + _x = 0 (1)

A general compact spatial derivative with a three-point stencil can be written to calculate the

spatial derivative:

aDi_l +(1-2a)Di+aDi+l = (_x](_Fi+l-_Fi-1)
(2)

where D i is the spatial derivative of F at point i.

The standard Pade' compact scheme I has the coefficients:

1
= - (3)

6

!I 1 ii



This gives fourth-order spatial accuracy. Since the value of the derivative at a point depends on

the value of its nearest neighbors, a scalar tridiagonal matrix must be solved to obtain the spatial

derivative.

Equation (2) can be written in matrix form as:

[A]{D} = [B]{F} (4)

where [A] and [B] are tridiagonal matrices. To solve Eq. (4), the matrix [A] must be inverted:

{D} = [A]-I[B]{F} (5)

In a MacCormack-type scheme, the derivative operator is split into forward and backward

operators such that:

{D} = {DF} + {DB} (6)
2

The derivative operators can be written:

{D F} = [AF]-I[BF]{F}

{D B} = [AB]-I[BB]{F}

(7)

(8)



Substituting into Eq. (6),

{D} - _([AF]-I[B F] + [AB]-I[BB]){ F} (9)

Multiplying through, we obtain:

[AF][AB]{D} = _([AB][B F] + [AF][BB])F (10)

Notice that Eq. (10) is only valid if:

[AF][A B] = [AB][A F] (11)

Equation (i 1) is true for all tridiagonal matrices with constant diagonals.

To avoid a tridiagonal matrix inversion, we use bidiagonal matrices for the forward and back-

ward operators. Writing out explicitly, we have:

aBDBi- 1 + ( 1 -- aB)DBi =

(_)(kBFi-1- (kB + mB)Fi + mBFi + 1)

(12)

( 1 - cF)DFi + cFDFi + 1 --

(_x)( k FFi_ 1 - ( k F + mF)F i + m FFi + 1)

(13)

4
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Using this, we find that at point i:

[AF][AB]{D}[i =

aB ( 1 -- cF)Di_ 1 ..I- (1 - aB)(1 - cF)Di + cF ( 1 - aB)Di + 1

(14)

Matching the coefficients in Eq. (14) with those on the left side of Eq. (2) gives: -z

F B
C " a

B
a

1 +,_-4tX _ 1+_

2 2
(15)

On the explicit side, we find:

([AS][B F] + [AFI[BBI){ F}Ii =

((ankF)Fi_2

+ (( 1 - cF)k B + ( 1 - an)k v - aB(k F + mF))Fi_ l +

(C F Bm - ( 1 - ce)(k B + m B) - ( 1 - aB)(k v + m F) + anme)Fi

+ (( 1 - cV)m 8 - cF(k B + m B) + ( 1 - aB)kF)Fi + 1

+ (cFmB)Fi + 2)

(16)

Matching the coefficients in Eq. (16) with Eq. (2) gives:



k F B-- -m = 0

k B F---m =-2[3 =-1 (17)

Performing a Taylor series expansion of the forward and backward operators gives:

D r 4r3 3d"3
= Fx+AX..-_-Fxx-(Ax ) -_Fxxxx+O(Ax) 4

Fx-Ax-g-Fxx + O(Ax) 4= (Ax) .._Fxxxx + (18)

Clearly, a fourth-order accurate central difference is recovered when the forward and backward

operators are substituted into Eq. (6). Using the terminology of Ref. [6], this method is a 4/2

scheme. This terminology refers to the order of the underlying fourth-order central difference and

the leading error term in the first-order biased differences.

Notice that, since bidiagonal matrices are used to calculate the derivatives, the local value of D

may be found using the value of D on one side only. By sweeping in the proper direction, the val-

ues of D may be found explicitly.

By using an additional explicit point and following the method used in Ref. [6], the order of

the forward and backward operators may be increased to third order, resulting in a 4/4 scheme.

This scheme is defined as:

F B 1
C " a "- -

3
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k F B 1= -m = -- (19)
6

kB F 5= -m = --
6

Consequently, one extra point is used in the explicit operator to achieve the increase in order.

Taylor series expansion of the forward and backward operators is:

The

DF = Fx-(Ax)3-_6Fxxxx + O(Ax)4

D B = F x + (Ax)31Fxxxx + O(Ax) 4 (20)

Substituting the coefficients of Eq. (19) into Eq. (16) reveals that the 4/4 scheme reduces to

the following fourth-order compact scheme:

2 D 5 2
_Di + 19 i-1+9 Di+ =

1_(1F 4 4

(21)

This illustrates one very important difference between the explicit MacCormack-type schemes

given in Ref. [6] and the compact MacCormack-type schemes described here. For explicit

schemes, the order of the forward and backward operators may be changed without changing the

underlying central difference (i.e., the sum of the forward and backward operators for the explicit

4/2 and 4/4 schemes is the same fourth-order central difference, giving identical dispersion per-



formance), while the compact 4/2 and 4/4 schemes have completely different dispersion perfor-

malice.

Notice that using a larger stencil on the forward and backward operators results in a larger

equivalent stencil for the underlying difference. As shown in Ref. [8], this method can be used to

derive a class of prefactored small-stencil high-order compact schemes.

Time Marching Methods

The original MacCormack scheme used a two-stage explicit time marching method:

U (I) = Un_AtSF[F(U n)]

un+ l = _(U n + UO)_AtsB[F(U(1))]) (22)

This scheme is second-order accurate in time, and is fourth-order accurate in space using the 4/2

compact-implicit scheme given in Eq. (15) for linear problems. To obtain fourth-order accuracy

in space for nonlinear problems, one needs to permute the forward and backward differences (see

Ref. [5]).

In addition, three multistage Runge-Kutta-type time marching methods for MacCormack-type

schemes will be described. These methods were derived for MacCormack-type schemes in [6],

and will be briefly described here. Using Eq. (1), a general six-stage Runge-Kutta MacCormack-

type scheme can be defined as

h (1) = -AtsF[F(Un)]

_'1 11i;



h(2)____AtSB[F(U n + o_2h(1))]

h(3) _._AtSF[F(U n+ 0_3h(2).)]

h(4)= -AtSn[F(U n + _4h(3))]

h (s) = -AtSF[F(U n + c_5h(4))]

(23)

Table 1: Time Marching Schemes

LDDRK 4- LDDRK 4-
RK2 RK4

6 Step 1 6 Step 2

cz2 1 1/2 112 0.353323

o_3 0 1/2 1/2 0.999597

ot4 0 1 1 0.152188

a 5 0 0 0 0.534216

ft.6 0 0 0 0.603907

151 1/2 1/6 116 0.0467621

152 1/2 113 113 0.137286

153 0 1/3 1/3 O. 170975

154 0 1/6 1/6 0.197572

155 0 0 0 0.282263

156 0 0 0 0.165142

c I 1 1 1 1

c2 1/2 1/2 1/2 1/2

c3 0 1/6 1/6 I/6

c4 0 1/24 1/24 1/24

c5 0 0 0 0.0162098

c6 0 0 0 0.00286365
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h(6)= -AtSB[F(U n+ o_6h(5))]

Un+ 1 = U n + _lh(1) + _2h(2) + [_3h(3)

+ 134h(4) + [_sh (5) + [_6h(6)

where 6_" refers to a forward spatial difference and 6 B to a backward spatial difference. Nor-

mally, the order of forward and backward differences are interchanged every step to avoid numer-

ical biasing.

The coefficients for the three time marching schemes are given in Table 1. The RK2 scheme is

second-order accurate, while the RK4 and Hu, et. al's 4-6 LDDRK methods 9 are both fourth-

order accurate in a linear sense. However, for nonlinear problems, the RK4 scheme is fourth-

order accurate while the 4-6 LDDRK method presented here reduces to third order accuracy.

Notice that the 4-6 LDDRK method uses a two-step marching cycle; one step has four stages and

the second step has six.

Accuracy Analysis

Consider a general MacCormack-type method, which is kth order accurate in time. The

underlying central difference is lth order accurate in space, while the biased differences are mth

order accurate in space. An accuracy analysis using Eq. (1) will give:

Ou
U(t + At) = U(t) + _-[ + O(Atk,AtAx m + 1,Axl) (24)

From Eq. (18), the 4/2 scheme will have a third-order time-space error term, while the 4/4

10



scheme is a true fourth-order method.

A wavenumber analysis of these schemes gives a more complete picture of their linear perfor-

mance and stability. The numerical wavenumber for a general three-point compact derivative (Eq.

(2)) is defined as:

OAx -i(ke -iOAx - (k + m) + me iOAx)= (25:
(ae -iOax + 1 - (a + c) + ce iOax)

where

-x < OAx < x (26)

For the standard compact scheme, the numerical wavenumber is given by:

0Ax = sin(0Ax) (27)

1 cos(0Ar))

Notice that the fight side of Eq. (27) is purely real. This is a property of central-difference

stencils.

For the 4/2 MacCormack-type scheme, the numerical wavenumber for the forward biased dif-

ference is:

Ii



z_j._"(_ I + cos(O_)) _

(_+_cos(O_))
(28)

Similarly, the numerical wavenumber for the backward biased difference is:

- / sin(OAx) _33 (- 1 + cos(OAx))_
(29)

There are two interesting things to observe in Eqs. (28) and (29). First, the real (dispersive)

part of both equations are equal and identical to the real part of Eq. (27). Second, the imaginary

4.0

3.0

!
¢-

_2.0

i
"-s

z

Figure 1:
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G----El 4/4 Compact MacCormack

0.0
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Wavenumber

Dispersion Characteristics of Compact MacCormack-type Schemes
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(dissipative) parts are equal and opposite. This is a property of MacCormack-type schemes.

Likewise, the numerical wavenumbers for the 4/4 scheme are:

§FAx = / (_sin(0Ax)-lsin(20Ax)]('5-4,-""-_, ,_
(_ + _cos(0Ax)]

1 )/
]-gcos(2OAx)

(_ + 4cos(0t_x))

(3O)

10'

100

10"I

m 10 -=

.10 "a
¢3

104

10.5

10"e

' ' I

explicit 4th order
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compact 4th order
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explicit 7-point DRP

10
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Figure 2: Dispersion Error Magnitude Comparison
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/(_ sin (0Ax)-I sin (20Ax)/
C_ - _-_

* _-7------ '
(_ +_cos(O_))

(31)

Figures 1 and 2 show the dispersion performance of these schemes, and compares them to

explicit schemes such as 4th and 6th order central differences and Tam and Webb's 7-point DRP

scheme. 3 Notice the improvement in the dispersion performance throughout the wavenumber

range from the 4/4 scheme; unlike all explicit MacCormack-type schemes, it outperforms the

scheme that it is based on.

101

10o

10"_

10.2

o=
¢::= 10_

,v-i
r/3
r_

10 .5

10"e

........ i

- " 4i2-et3mpaet MaeCormack 1

"'...

°.

"",.

L t i i | i = |

10

Points per Wavelength

Figure 3: Dissipation Magnitude for Compact MacCormack-type Schemes
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Figure 3 shows the dissipation performance of the two MacCormack-type schemes. Again,

the reduction in dissipation in the resolved wavenumber range from the 4/4 scheme is evident.

Performance and Stability of Compact MacCormack-type Schemes

The numerical wavenumber of the forward and backward operators of a MacCormack-type

scheme may be written as:

_F = _C i5

OB= + i5

(32)

m

Notice that the dispersion relation 0 c is the same for both the forward and backward differ-

ences; however, the dissipative term _i is equal and opposite.

Putting these definitions into the time-marching schemes described above, we obtain:

U(t + At) = (1 + Cl(-iAt)O c + (33)

c2(-iAt)2 ( ( (}C) 2 + 82) +

c3(-iAt)30 C ( (oC) 2 + 82) +

c4(-iAt)4((oC) 2 + 52) 2 +

c5(-iAt)5() C ( (o C) 2 + 52) 2 +

c6(-iAt) 6 ( (oC) 2 + 52) 3) U ( t)

= (G(O))U(t)

Using this equation, we can find the frequency response of the time-marching scheme, as well

as its stability. For this stability analysis, the magnitude of G(0) must be equal to or less than one

for 0 < 0 < re. In this work, 0 -> 0 and 0 = _, whichmeasurethe i6ng:and short wavelength stabil-

15



ity, are investigated analytically. As a matter of observation, if the scheme is stable for small 0

and for 0 = n, it is almost always stable for all 0. However, there is no mathematical proof that

this has to be true .......

Table 2 shows the results for the stability analysis, both analytical and numerical. Interest-

ingly enough, the results for seyeral of the schemes show that the most unstable wavenumber is

not at 0 -> 0 or 0 = n. In particular, the LDDRK 4-6 scheme had its most unstable wavenumber at

approximately 0 = 0.91_.

Boundary_ Stencils for Compact MacCormack-t _vpe Schemes

1) Effect of Boundary. Stencils on Interior Scheme Performance

Th.e numerical performance of the boundary stencil for a compact scheme has a much larger

effect on the stability and accuracy of the scheme than the boundary stencil for the equivalent

Scheme

4/2

4/4

Table 2: Stability Limits

Time

marching

RK2

RK4

LDDRK

4-6

RK2

RK4

LDDRK

4-6

CFL limit

(0 -> 0)

1

.5

(stable)

(stable)

(unstable)

(stable)

(stable)

CFL limit

(0 -> _)

1

.934684

1

2

.80946

CFL limit

(numerical)

0.577

1.0

0.891

(unstable)

0.851

0.747
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compact scheme. 1°'11 The reason for this is that the error from the boundary stencil can propa-

gate many points into the computational domain.

Taking the 4/2 scheme as an example, let us assume that we have an error eo from the bound-

ary at the beginning of the backward sweep. Defining e0 as:

g0 = (DB)interior- (DB)boundary (34)

where the subscript 'interior' refers to the spatial derivative that the interior scheme would have

obtained and the subscript 'boundary' refers to the derivative obtained by the boundary stencil. It

can be seen that we are defining the error with respect to the spatial derivative that the interior

scheme would have obtained rather than the exact analytical derivative.

lO0

10 "1

to-_

10"s

104

10"5

10_

10.7

lO.a

lo-'

10"_o

1041

10-_a

=\
\

\

.... I .... 1 ....

t ,  chomo.......... 4/4 scheme

"°'-.°°..%

\
\

"',..

"-...

"...

\

I...

"°.

"°..

...... , • , ,. , , .......

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Points from Boundary

Figure 4: Effect of Boundary Stencil Error on Interior Solution
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Substituting into Eq. (12), we find that the error propagates inward from the boundary.

error for a derivative i grid points away from the boundary is:

The

(DB)interior i = (DB)boundary i+ l ?-a _ EO
(35)

or

Ei ---- . E0
1 - aB)

(36)

One point of interest is that the error due to the boundary stencil used at the start of the sweep

has a much greater effect on the computed derivative than that of the boundary stencil used at the

end of the sweep. Figure 4 illustrates the effect of boundary stencil error on the interior deriva-

tives for the 4/2 and 4/4 schemes. It should he noted that the 4/2 scheme is less affected by

boundary stencil error than the 4/4 scheme.

2) Boundary. Stencil Description

One-sided, five-point, explicit boundary stencils were used for the two schemes described.

These stencils were obtained by matching the Taylor series terms to the fourth order for the for-

ward and backward stencils of each scheme. For space reasons, the stencils are not given here;

however, the derivation is straightforward.

This is not the only option for boundary stencil specification. Another possibility is to define

18



ghost points outside the computational domain and extrapolate data to these artificial points using

fourth-order accurate extrapolation. In this way, the interior scheme can be used on the bound-

aries. For the fourth-order accurate compact schemes given here, only one ghost point is needed.

3) Effect of Multistage Time Stepping on Accuracy at Boundaries

The boundary condition specification for MacCormack-type schemes is not straightforward,

due to the dissipative error terms in the one-sided differences. For example, the standard

symmetry plane condition is set by using the method of images to set ghost values outside the

domain. This, however, is only true for the first stage of a MacCormack-type method. For the

second stage, the method of images is not correct; instead, the ghost values must be set in such a

way that the end result is symmetric. For a two-stage RK2 method, this may be possible; for a

four- or six-stage method, the errors can mount quickly. As noted above, the errors at the

boundary will instantaneously propagate far into the domain at each stage. Thus, correct

boundary condition specification is critical to the success and stability of compact MacCormack-

type schemes.

MacCormack-type schemes.

shops. 12,13

Benchmark Test Problems and Results

Three test problems were chosen to investigate the numerical performance of the two Compact

These problems are from the First and Second CAA Work-

1) 1-D Linear Wave Propagation

The first problem tested is the first linear problem given in the first CAA Workshop. The

problem asks for the solution of the 1-D linear convection equation at time = 400:

19
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Ut+U x = 0

1
U(x,O)= _exp(-ln(2)(;) 2)

(37)

where:

Ax = 1.0 (38)
-20 _<x < 450

Boundary condition specification is straightforward in this problem. At x = -20, which is the

inflow boundary, the derivative of U is set to zero. At x = 450, which is the outflow boundary, the

derivative of U is calculated explicidy from the interior.

Figures 5-7 show the results for the 4/2 scheme used with each time-stepping method at vary-

ing time steps. As noted in Ref. [6], the RK2 time-stepping method shows a tendency to affect the

0.40

-' 0.20

0.00

-0.20

I

o Exact
o -- CFL = 0.0625

' ............CFL= 0.125
.... CFL = 0.25

I --- CFL = 0.5

350.0 400.0 450.0
X

Figure 7: Performance of (4-6)-4/2 Scheme on Benchmark Problem 1
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dispersion as the time step increases, while the RK4 method tends to be dissipative at higher time

steps. The LDDRK 4-6 method also dissipates at higher time steps when combined with the 4/2

scheme; however, this is more due to the scheme itself than the time stepping method.

Figure 8 shows the results for the 4/4 method at a time step of CFL = 0.5 for both the RK4 and

LDDRK 4-6 time stepping methods. The improvement in dissipation and dispersion from the 4/4

scheme is evident, though the difference between the two time marching methods is small at this

low time step. As the time step is increased, the LDDRK 4-6 method will show an improvement

over the RK4 method.

2) 1-D Shock Tube Problem

The second one-dimensional problem solves the Category 2 shock tube problem from the

First CAA Workshop. 12 The equations solved are the nonlinear Euler equations, written in con-

0.40

0.20

0.00

-0.20

0

i
I
I
i
?
i
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i

I
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I

I i
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Figure 8: Performance of 4/4 Scheme on Benchmark Problem 1
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servative form:

E

d pu2+ p , = 0m _

u(E + p)

(39)

where

1 2
p= (T-1)(E-_pu) (40)

The equations are solved on the domain -235 < x < 235, with _ = 1.0. The initial conditions

are:

u(x, o) = 0

p(x,O) =

4.4 x < -2

2.7+ 1.7cos((X 4 2)_) -2<x<2

1.0 x> 2

(41)

p(x, 0) = (yp)'/Y

The boundary conditions used are Thompson's 1-D characteristic formulation. 14'15 For l-D,

three characteristics are defined:

23



cl dp __du: d_ -pc._

-2_(tp )_c 2 : c dp (42)

do __du
c 3 = _ + pc-_

where the overbar terms are mean values that are set as the initial values at the boundary. In this

formulation, outgoing characteristics are computed using the interior scheme, while incoming

characteristics are set to zero. For the inflow boundary (x - -235), c 1 and c 2 are incoming, and are

set to zero. For the outflow boundary (x = 235), c 3 is incoming and is set to zero.

Figures 9 and 10 show the results for density at time = 60 for this problem. In these figures,

the expansion fan is shown on the left, with the contact surface in the middle and the shock on the

right. Only part of the computational domain is shown in order to illustrate the performance of

the different methods.

In Fig. 9, the three time stepping methods are compared using the 4/2 scheme. All three use a

time step of CFL = 0.25. The ability of all three methods to accurately track the discontinuities,

with the RK2 time stepping method having more oscillations in the solution than the other two

methods.

In Fig. 10, the 4/4 scheme is tested using the RK4 and LDDRK 4-6 time stepping methods.

At this small time step, both methods produce comparable results. Notice that, while the 4/4

method does have more oscillations in the solution compared to the 4/2 method, the contact sur-

face is more sharply resolved. This is due to the decreased dissipation and increased dispersion

accuracy of the 4/4 method.
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Figure 9: Effect of Time Stepping Method on 4/2 Scheme Solution of Nonlinear Benchmark
Problem 2 (CFL = 0.25)
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Figure 10: Effect of Time Stepping Method on 4/4 Scheme Solution of Nonlinear Benchmark
Problem 2 (CFL - 0.25)
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3) 2-D Acoustic Scattering Problem

The third test problem is from the Second CAA Workshop. 13 In this problem, a 2-D cylinder

of radius R = 0.5 is located at the origin. At time = 0, an initial pressure pulse is specified:

(x- 4) 2 +
p(x,y,O)= exp(-ln(2)( 0.04 y2)) (43)

The problem asks for the unsteady pressure data for 6 < t < 10 at three

(0,5),(5 / _ ,5 / J2 ), and (-5,0).

The equations to be solved are the linearized Euler equations in polar coordinates:

stations:

0.080 _ . , , .... , "_

o-of/ i o-2 ............4-4/2
0.0401 I t l .... (4-6)-4n

t/, _ I _ 4-4/4

0.020

0.000

-0.020

-0.040
6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

time

Figure 11: Solution of Benchmark Problem 3 at (0,5).

(CFL = 0.5)
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V r

v o +

P

t  f0t0 +r p = 0

Vr V0 Vr

(44)

The computational domain extends radially from R = 0.5 to R = 10.5, and azimuthally from

0=0 to 0 = ft. Three boundary conditions are used: a wall condition on the cylinder, an acoustic

radiation condition in the far field, and a periodic condition at the azimuthal boundaries.

The wall condition is based on Tam's wall condition. 16 This condition requires that the time

rate of change of the normal velocity at the wall is zero:

dvr_ dp

dt dr
- 0 (45)

2

0.060

0.040

0.020

0.000

-0.020 '
6.0

t o Exact

2-4/2
............ 4-4/2

.... (4-6)-4/2
4-4/4

•----_ (4-6)-4/4

I _ I , I , I , I i I

6.5 7.0 7.5 8.0 8.5 9.0

time

U
, |, ,

9.5 10.0

Figure 12: Solution of Benchmark Problem 3 at (-5,0)

(CFL =0.5)
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This condition is imposed by setting the normal derivative of pressure at the wall to zero for

each sweep, while the other radial derivatives are computed normally.

The acoustic radiation boundary condition is given as:

d_t IJr

d

V 0

P

V r

0 +

P
1{Vr}0

P

= 0 (46)

The radial derivatives at the exterior boundary are computed using one-sided explicit stencils.

The periodic boundary condition requires some extra work. To start the sweep for the azi-

muthal derivative, the one-sided boundary stencil is used. At the end of the sweep, a corrected

value for the derivative is known, and Eq. (34) is used to update the interior points as required.

For this calculation, a uniformly-spaced grid of 201 radial points and 301 azimuthal points is

used, with a time step - CFL = 0.5. Since the grid does not have a point at (5/4r2,5/,f2), data is

only taken at the points (0,5) and (-5,0).

Figures 11 and 12 show the results for these locations, compared to the exact solution. The

results of both methods are good for this problem. At the initial transient in Fig. 11, it can be seen

that the 4/4 scheme is less dissipative, but has the wave arriving slightly early. The 4/2 scheme is

more dissipative, with a lagging dispersion error. At this relatively small time step, all time

marching methods perform well.
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Conclusions

A new series of compact MacCormack-type schemes are presented which do not require tridi-

agonal matrix inversions. Boundary stencils and boundary conditions are described, and results

are shown for linear and nonlinear CAA benchmark problems. Stability and wave propagation

performance are shown for the two schemes, using various time-stepping methods. The compact

methodology gives a distinct performance advantage over previous explicit schemes, and can be

easily added to existing MacCormack scheme solvers.
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